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ABSTRACT

A Speculative Approach to Parallelization
in Particle Swarm Optimization

Matthew Gardner
Department of Computer Science, BYU

Master of Science

Particle swarm optimization (PSO) has previously been parallelized primarily by
distributing the computation corresponding to particles across multiple processors. In this
thesis we present a speculative approach to the parallelization of PSO that we refer to as
SEPSO.

In our approach, we refactor PSO such that the computation needed for iteration t+1
can be done concurrently with the computation needed for iteration t. Thus we can perform
two iterations of PSO at once. Even with some amount of wasted computation, we show
that this approach to parallelization in PSO often outperforms the standard parallelization
of simply adding particles to the swarm. SEPSO produces results that are exactly equivalent
to PSO; this is not a new algorithm or variant, only a new method of parallelization.

However, given this new parallelization model we can relax the requirement of ex-
actly reproducing PSO in an attempt to produce better results. We present several such
relaxations, including keeping the best speculative position evaluated instead of the one cor-
responding to the standard behavior of PSO, and speculating several iterations ahead instead
of just one. We show that these methods dramatically improve the performance of parallel
PSO in many cases, giving speed ups of up to six times compared to previous parallelization
techniques.

Keywords: Parallel algorithms, optimization methods, particle swarm optimization, specu-
lative decomposition
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Chapter 1

Introduction

Particle swarm optimization (PSO) has been found to be a highly robust and effective

algorithm for solving many types of optimization problems [Poli, 2008a]. For much of the

algorithm’s history, PSO was run serially on a single machine. However, the world’s com-

puting power is increasingly coming from large clusters of processors. In order to efficiently

utilize these resources for computationally intensive problems, PSO needs to run in parallel.

Within the last few years, researchers have begun to recognize the need to develop

parallel implementations of PSO, publishing many papers on the subject. The methods

they have used include various synchronous algorithms [Parsopoulos et al., 2004] and asyn-

chronous algorithms [Mostaghim et al., 2006]. Parallelizing the evaluation of the objective

function can also be done in some cases, though that is not an adaption of the PSO algorithm

itself and thus is not the focus of this paper.

These previous parallel techniques distribute the computation needed by the particles

in the swarm over the available processors. If more processors are available, these techniques

increase the number of particles in the swarm, either by adding individual particles or by

adding entire new sub-swarms. In almost all cases, adding additional particles produces

better results in the same amount of time [McNabb et al., 2009]. In Figure 1.1 we see an

example of this on the well-known benchmark function Sphere (20 dimensions, reporting

the average of twenty runs). In terms of the number of iterations performed (which is

equivalent to wall-clock time if all particles are evaluated in parallel), every time the swarm

size increases, the performance improves.

1
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Figure 1.1: Function Sphere with various swarm sizes, comparing performance with the
number of iterations of the algorithm performed.

However, it can be seen from the graph that once the swarm is sufficiently large,

there comes a point of diminishing returns with respect to adding particles. The increase in

performance seen when moving from 50 to 100 particles is roughly equivalent to the increase

seen when moving from 1000 to 4000. In Figure 1.2 we show the value obtained after 50,000

function evaluations (not iterations) as a function of swarm size, again for the function

Sphere. Increasing the swarm size from 5 to 10 has a significant effect on the value obtained.

However, increasing the swarm size from 16 to 30 makes the algorithm less efficient; that is,

it reduces the progress the algorithm makes per evaluation. Other functions show similar

trends, though often the optimal swarm size is slightly larger. For this reason, previous work

has recommended the use of a swarm size of 50 for PSO [Bratton and Kennedy, 2007]. Thus,

in at least some cases, adding particles indefinitely will not yield an efficient implementation.

Our purpose is to explore the question of what to do with a thousand processors when

50 or 100 particles is the most efficient swarm size, and simply adding particles results in

only incremental improvement. We thus consider PSO parallelization strategies for clusters

of hundreds or thousands of processors and functions for which a single evaluation will take

2
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Figure 1.2: Function Sphere with various swarm sizes, comparing performance with the
number of function evaluations performed. Error bars show median and 10th and 90th
percentiles.

long enough to merit a parallelization of one particle per processor—at least hundreds of

milliseconds, but perhaps several minutes or longer.

In order to solve the problem of diminishing returns, we apply the concept of spec-

ulative decomposition [Grama et al., 2003] to particle swarm optimization, using extra pro-

cessors to perform two iterations of PSO at the same time. Speculative decomposition is

analogous to speculative execution (also known as branch prediction), a technique commonly

used in processors. Modern processors, when faced with a branch on which they must wait

(e.g., a memory cache miss), guess which way the branch will go and start executing, ensur-

ing that any changes can be undone. If the processor guesses right, execution is much farther

ahead than if it had idly waited on the memory reference. If it guesses wrong, execution

restarts where it would have been anyway. Thus the processor speculates about future paths

of execution in an attempt to decrease overall processing time.

3
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In this paper we show that the results of standard PSO can be reproduced exactly1,

two iterations at a time, using a speculative approach adapted from speculative execution.

We show that the standard PSO equations can be factored such that a set of speculative

positions can be found which will always include the position computed in the next iteration.

By computing the value of the objective function for each of the speculative positions at

the same time the algorithm evaluates the objective function for the current position, it is

possible to know the objective function values for both the current and the next iteration at

the same time. We demonstrate this principle by implementation and show that it produces

exactly the same results as standard PSO, but two iterations at a time. The resulting

implementation runs efficiently on large clusters where the number of processors is much

larger than a typical or reasonable number of particles, producing better results in less

wall-clock time.

We refer to this parallelization technique as “speculative evaluation in particle swarm

optimization”, or SEPSO. It is important to note here that SEPSO is not a variant of

PSO. We simply propose a new way to think about the parallelization of PSO that we show

performs better in many cases than previous parallelizations.

Furthermore, we show that if we relax the requirements of the algorithm, no longer

demanding that it strictly reproduce the exact behavior of standard PSO, we can introduce

new speculative techniques that often out-perform both standard parallelizations of PSO

and SEPSO. These relaxations make better use of the information obtained from the extra

exploration made by the speculative function evaluations. We also explore the idea that,

like branch prediction in processors, we need not speculatively evaluate all possible future

positions, we can accelerate the algorithm even if we are just likely to have guessed right.

By pruning the speculation to just paths that are statistically likely to reproduce the paths

that are equivalent to PSO we can increase the swarm size without increasing the number

1In fact it is only because the results are exactly the same that we are confident of our implementation.
With the careful use of random seeds we were able to detect errors in our speculative implementation when
particle positions were off in the tenth digit.

4
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of speculative evaluations. We also consider several recovery strategies for cases where the

pruned set of speculative evaluations does not contain the evaluation that standard PSO

would have done. A further improvement we explore is speculating several iterations ahead

instead of just one, which is made possible by pruning the number of speculative evaluations.

The balance of this paper is organized as follows. Section 1.1 describes the particle

swarm optimization algorithm, and Section 1.2 gives a brief overview of previous paral-

lelization techniques for this algorithm. Section 2 shows mathematically how speculative

evaluation can be done in parallel PSO to perform two iterations at once, leaving implemen-

tation concerns to the appendices. In Section 3, we discuss various methods of improving the

performance of speculative evaluation in PSO, all of which break the requirement of strictly

reproducing the behavior of the original algorithm. Section 4 describes the experiments we

ran, and Section 5 presents the results of those experiments. In Section 6 and Section 7 we

conclude and discuss future work.

1.1 Particle Swarm Optimization

Particle swarm optimization was proposed in 1995 by James Kennedy and Russell Eber-

hart [Kennedy and Eberhart, 1995]. The algorithm is used to intelligently search a multi-

dimensional space by mimicking the swarming and flocking behavior of birds and other

animals. It is a social algorithm that depends on interaction between particles to quickly

and consistently approximate the optimal solution to a given objective function.

The motion of particles through the search space has three components: an inertial

component that gives particles momentum as they move, a cognitive component where par-

ticles remember the best solution they have found and are attracted back to that place, and

a social component by which particles are attracted to the best solution that any of their

neighbors have found.

5
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At each iteration of constricted PSO, the position ~xt and velocity ~vt of each particle

are updated as follows:

~vt+1 = χ
[

~vt + φPUP
t ⊗ (~bP

t − ~xt) + φNUN
t ⊗ (~bN

t − ~xt)
]

(1.1)

~xt+1 = ~xt + ~vt+1 (1.2)

where UP
t and UN

t are vectors of independent random numbers drawn from a standard uni-

form distribution, the ⊗ operator is an element-wise vector multiplication,~bP (called personal

best) is the best position the current particle has seen, and ~bN (called neighborhood best) is

the best position the neighbors of the current particle have seen [Bratton and Kennedy, 2007].

The parameters φN , φP , and χ are given prescribed values required to ensure convergence

(2.05, 2.05, and .73, respectively) [Clerc and Kennedy, 2002].

Changing the way neighbors are defined, usually called the “topology,” has a signifi-

cant effect on the performance of the algorithm. In the Ring topology, each particle has one

neighbor to either side of it; in the Complete topology2, every particle is a neighbor to every

other particle [Bratton and Kennedy, 2007]. In all topologies a particle is also a neighbor to

itself in that its own position and value are considered when updating the particle’s neigh-

borhood best, ~bN . Thus with p particles, using the Ring topology each particle with index i

has three neighbors: i − 1, i (itself), and i + 1. With the Complete topology, each particle

has p neighbors.

In this paper we use these topologies as well as a parallel adaptation of the Complete

topology, called Random, that has been shown to approximate the behavior of Complete

with far less communication [McNabb et al., 2009]. In the Random topology, each particle

randomly picks two other particles to share information with at each iteration, along with

itself. Thus in both the Ring and the Random topologies, all particles have three neighbors.

2The Complete topology has often been unfortunately named Star in the literature, which in graph theory
refers to a completely different topology. Other names have also been used, including “global topology” and
gbest. We use the graph theory term “Complete” in this paper.

6
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The ideal topology and swarm size for PSO depend on the objective function. Re-

searchers have devised various benchmark functions and have found that the ideal topology

for one function may perform very poorly for another function. The No Free Lunch The-

orems for Optimization show that this is true in general—if an algorithm performs well

on average for one class of functions then it must do poorly on average for other prob-

lems [Wolpert and Macready, 1997].

An attempt to standardize PSO found that although a Complete swarm of 50 par-

ticles converged to the global optimum more quickly for many benchmark functions than

the same swarm size with a Ring topology, it was also more likely to prematurely con-

verge to local optima for other functions. The study found no significant improvement for

any other swarm size between 20 and 100 and concluded with a recommendation to use a

swarm of 50 particles with a Ring topology as a starting point. The authors acknowledged

that choosing the ideal topology requires thorough experimentation for the particular prob-

lem [Bratton and Kennedy, 2007]. Other authors have explained that a large swarm with a

sparse topology propagates information slowly [Montes de Oca et al., 2009].

1.2 Related Work

The idea of speculative decomposition in the parallelization literature is not new [Grama et al.,

2003]. In the field of function optimization, simulated annealing has previously been paral-

lelized using this technique [Witte et al., 1991], though we are not aware of other evolutionary

or swarm-intelligence based algorithms having been parallelized with speculative decompo-

sition.

There have been several parallelizations of PSO presented in the literature. The

improvements described in these papers come in two major areas: innovations in implemen-

tation details and innovations in the use of topology and swarm size to scale PSO to many

processors.

7
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1.2.1 Innovative Implementations

There are many ways to parallelize the basic PSO algorithm. The most fundamental de-

cision to make in parallel PSO is which parallel architecture to use. Several architectures

have been proposed, including Master-Slave, fully distributed (sometimes called “diffusion”),

and reformulating PSO into Google’s MapReduce framework [Belal and El-Ghazawi, 2004,

McNabb et al., 2007]. A somewhat orthogonal implementation decision when parallelizing

PSO is whether to have synchronous communication or asynchronous communication.

Synchronous parallel implementations of PSO reproduce the standard serial algorithm

exactly. This approach was first described analytically by Belal and El-Ghazawi [2004] and

first implemented by Schutte et al. [2004]. In a typical master-slave algorithm, the mas-

ter assigns tasks to slave processors, and in parallel PSO, each task consists primarily of

a function evaluation. Updating the particle’s position and value may also be included in

the task [Belal and El-Ghazawi, 2004], or this work may be performed in serial by the mas-

ter [Schutte et al., 2004]. Before proceeding to the next iteration, particles communicate,

and each particle updates its neighborhood best. Whether this communication step happens

sequentially on the master or in parallel, each particle must receive communication from

its neighbors before proceeding. The benefits of the synchronous PSO include its simplic-

ity, repeatability, and comparability with standard PSO, which may be essential in research

applications.

Asynchronous parallel PSO [Venter and Sobieszczanski-Sobieski, 2005, Koh et al., 2006]

is a modification to the standard algorithm which removes the synchronization point at

the end of each iteration. Instead, particles iterate independently and communicate asyn-

chronously. In a typical master-slave implementation of asynchronous parallel PSO, the

master updates each particle’s personal best, neighborhood best, velocity, and position im-

mediately after receiving the function value from the slave processor. Since this update

occurs while other particles are still being evaluated, it may use information from the pre-

8
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vious iteration for some neighbors.3 In a partially asynchronous implementation, particles

might wait for some but not all neighbors to complete before proceeding [Scriven et al.,

2008a]. In some master-slave implementations, particles never get more than one iteration

ahead of others [Venter and Sobieszczanski-Sobieski, 2005, Koh et al., 2006]. However, in a

fully distributed implementation, particles might never wait for information, and one parti-

cle could complete many more iterations than another particle [Scriven et al., 2008b]. The

main effect of asynchronous evaluation is that processors spend less time idle—this trait

is particularly valuable when processors are heterogeneous or function evaluation times are

varied [Venter and Sobieszczanski-Sobieski, 2005, Koh et al., 2006]. Asynchronous parallel

PSO behaves differently than the standard algorithm and may even produce different results

between runs. Most reports conclude that asynchronous communication produces similar

numerical results to the standard algorithm, but the question has not yet been thoroughly

addressed [Venter and Sobieszczanski-Sobieski, 2005, Koh et al., 2006].

1.2.2 Scaling PSO to many processors

The other area of research in parallelizing PSO deals not with the implementation details of

architecture and synchronicity, but with what should be done with the PSO equations when

many hundreds or thousands of processors are available. The main issues that have been

addressed in this space are how many particles to use for a particular number of processors

and what communication topology should be employed.

The number of particles per processor has typically been decided by how long it

takes to evaluate the function being optimized. When the function takes longer than a

few seconds to evaluate, previous techniques have assigned the number of particles in the

swarm to be the number of processors available [Jin and Rahmat-Samii, 2005, McNabb et al.,

2009], advocating using as many processors as possible to get the best performance. When

3Asynchronous parallel PSO has been compared to the “asynchronous updates” variant of serial
PSO [Koh et al., 2006]. However, serial PSO with asynchronous updates differs from standard PSO in
that particles use newer information, but asynchronous parallel PSO differs from standard PSO in that
particles use older information.

9
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the function takes far less time to evaluate than it takes to send a message across a network

(e.g., through the TCP/IP stack), parallel implementations assign several or many particles

to a single processor [Chu and Pan, 2006, Chang et al., 2005]. Often the processor only sends

information about the best particle it evaluated to other processors [Belal and El-Ghazawi,

2004].

Another popular method is simply to run PSO independently on each of the processors

available, taking the best result when all of the runs complete. It should be noted that this

is equivalent to the previously stated method of assigning many particles to each processor,

only with no communication between processors instead of little communication. Both of

these methods can be described as changes in the communication topology of the original

PSO algorithm [McNabb et al., 2009].

Thus previous work in parallelizing PSO, apart from creating innovative implemen-

tations, has consisted entirely of increasing the swarm size and adapting the topology to be

better suited to parallel computation.

With regard to increasing the swarm size in PSO, some recent work has suggested that

increasing the swarm size throughout the course of the optimization process provides better

results than having a set swarm size [Hsieh et al., 2009, Montes de Oca et al., 2010]. How-

ever, these results focused on serial computation and are based on total number of function

evaluations, which, when running in parallel on expensive functions, is less important than

total number of iterations. Other work focusing on parallelization has shown that when extra

processors are available they should be used, as performance increases with swarm size when

measuring in terms of number of iterations [McNabb et al., 2009, Jin and Rahmat-Samii,

2005]. If the swarm size were varied throughout the course of the optimization process, some

processors would be sitting idle at most iterations.

The contribution of our work is in this area of what should be done with the PSO

equations to better utilize a thousand processors when they are available. In our work we

use a synchronous, MapReduce implementation of parallel PSO. While we use a specific

10
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implementation, we describe how speculative evaluation can be performed in any of the

synchronous architectures mentioned in the previous section. The adaptation of our methods

to asynchronous PSO parallelization methods should be straightforward, though it is left to

future work.

11
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Chapter 2

Speculative Evaluation in PSO

PSO can be trivially parallelized by assigning each particle’s computation to an in-

dividual processor. But as we have seen in Figure 1.2, for some functions, and for large

numbers of processors, just adding particles reaches a point of diminishing returns. That is,

beyond some point adding processors with previous techniques does not help the algorithm

reach any given level of fitness significantly faster. To fix this, instead of adding particles we

employ extra processors in a speculative approach that allows us to perform two iterations

at a time.

Our speculative methods require refactoring the PSO equations such that all possible

positions for each particle at iteration t + 1 can be evaluated in parallel along with the

position of each particle at iteration t. With some careful bookkeeping, we can then piece

together the results of iteration t+1 for each particle, thus using extra processors to evaluate

two iterations of the algorithm in the time it takes to evaluate the function once. As we

will show in Sections 2.1 and 2.2, a wise choice of topology limits the necessary speculative

evaluations to seven per particle.

To see the value of this refactoring, suppose that 1000 processors are available, and

that the evaluation of the objective function takes one hour. If we only want a swarm of

100 particles, 900 of the processors would be sitting idle for an hour at every iteration, and

it would take two hours to run two iterations. If instead we perform speculative evaluation,

sending each of the 7 possible speculative positions of a particle to be computed at the

13
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same time as its current position, we would use 800 of the 1000 processors and perform two

iterations in one hour.

In order to do two iterations at once, we must use 8 times as many processors as there

are particles in the swarm. If these processors were not performing speculative evaluation,

they might instead be used for function evaluations needed to support a larger swarm. This

raises the question of whether a swarm of 100 particles doing twice as many iterations

outperforms a swarm of 800 particles. We show in Section 5 that in many, though not

all, instances, a smaller swarm performing more iterations does in fact outperform a larger

swarm.

Section 2.1 shows in detail how the PSO equations can be refactored to allow for

speculative evaluation, proving that SEPSO exactly reproduces the behavior of the PSO al-

gorithm. The section also introduces some notation used later in the paper. Section 2.2 gives

a brief discussion of how the topology used affects the amount of speculative computation

needed.

2.1 Refactoring the PSO Equations

To perform two iterations at a time we must first refactor PSO such that the determination of

the value of the objective function is separate from the rest of the computation. For simplicity,

this discussion will describe the case where PSO is performing function minimization using

the Ring topology. In this example, each particle has two neighbors, the “right neighbor”

and “left neighbor,” whose positions are represented as ~xR and ~xL respectively. Though we

will only describe the case of the Ring topology here, the math is straightforward for other

topologies. Our discussion of the implementation in Section A is independent of specific

topologies, and we use several different topologies in our experiments.

The refactoring hinges on the idea that there are only a few possible new positions,

or updates, for ~bN and ~bP (assuming the random coefficients UP
t and UN

t have been drawn).

For the Ring topology there are 7 possible update cases, identified in Table 2.1. We label
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Table 2.1: All possible updates for a particle with two neighbors

Identifier Source of ~bP update Source of ~bN update

(−,−) No update No update
(−, L) No update Left Neighbor
(−, R) No update Right Neighbor
(S,−) Self No update
(S, L) Self Left Neighbor
(S, R) Self Right Neighbor
(S, S) Self Self

each case with an identifier referring to the source of the update: a minus sign (−) represents

no update, L represents an update to ~bN coming from the left neighbor, R represents an

update to ~bN coming from the right neighbor, and S represents an update to either ~bP or

~bN coming from the particle itself. As an example, (S,−) refers to the case that the particle

finds a new personal best, but neither it nor its neighbors find a position that updated its

neighborhood best. In the equations that follow, we refer to an update case as c, and to the

set of cases collectively as C.

In order to incorporate the determination of which case occurs into the position and

velocity update equations, we introduce an indicator function Ic
t+1 for each case c ∈ C. When

c corresponds to the case actually taken by PSO, Ic
t+1 evaluates to 1; otherwise it evaluates

to 0. We can then sum over all of the cases, and the indicator function will make all of

the terms drop to zero except for the case that actually occurs. For example, the indicator

function for the specific case (S,−) (which, as is shown in Table 2.1, means that the particle’s

personal best was updated, but its neighborhood best was not) can be written as follows:
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I
(S,−)
t+1 (f(~xt), f(~xL

t ), f(~xR
t ), f(~bP

t−1), f(~bN
t−1)) =































































1 if f(~xt) < f(~bP
t−1)

and f(~bN
t−1) < f(~xt)

and f(~bN
t−1) < f(~xL

t )

and f(~bN
t−1) < f(~xR

t )

0 otherwise

(2.1)

For each case c ∈ C, there is also a corresponding velocity update function ~V c
t+1. When

the case is known, the specific values of ~bP
t and ~bN

t may be substituted directly into (1.1).

For example, in case (S,−), ~bP
t = ~xt, as ~bP was updated by the particle’s current position,

and ~bN
t = ~bN

t−1, as ~bN was not updated at iteration t:

~V
(S,−)
t+1 (~vt, ~xt, ~x

L
t , ~xR

t ,~bP
t−1,

~bN
t−1, U

P
t , UN

t )

= χ
[

~vt + φPUP
t ⊗ (~xt − ~xt) + φNUN

t ⊗ (~bN
t−1 − ~xt)

]

(2.2)

In the same way we can create notation for the position update function by substi-

tuting into (1.2). For compactness, we will drop the parameters to ~V c
t+1 since they can be

inferred from the subscripts.

~Xc
t+1(~xt, ~vt, ~x

L
t , ~xR

t ,~bP
t−1,

~bN
t−1, U

P
t , UN

t ) = ~xt + ~V c
t+1 (2.3)

With this notation we can re-write the original PSO velocity equation (1.1), intro-

ducing our sum over cases with the indicator functions. Again, we represent the indicator

functions and velocity functions without the parameters for compactness. The equation
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becomes:

~vt+1 = χ
[

~vt + φPUP
t ⊗ (~bP

t − ~xt) + φNUN
t ⊗ (~bN

t − ~xt)
]

=
∑

c∈C

Ic
t+1 χ

[

~vt + φPUP
t ⊗ (~bP

t − ~xt) + φNUN
t ⊗ (~bN

t − ~xt)
]

=
∑

c∈C

Ic
t+1

~V c
t+1 (2.4)

Similarly, the position update equation (1.2) becomes:

~xt+1 = ~xt + ~vt+1 =
∑

c∈C

Ic
t+1

~Xc
t+1 (2.5)

The value of the objective function at ~xt+1 is given by:

f(~xt+1) =
∑

c∈C

Ic
t+1 f( ~Xc

t+1) (2.6)

Returning our attention to the computation of ~xt+1 in (2.5) and writing it with the

parameters which were omitted above, we obtain:

~xt+1 =
∑

c∈C

Ic
t+1(f(~xt), f(~xL

t ), f(~xR
t ), f(~bP

t−1), f(~bN
t−1))

~Xc
t+1(~xt, ~vt, ~x

L
t , ~xR

t ,~bP
t−1,

~bN
t−1, U

P
t , UN

t ) (2.7)

In this form the important point to notice is that there are only 7 values (for this

Ring topology) in the set { ~Xc
t+1 : c ∈ C} and that none of them depend upon f(~xt) or any

other objective function evaluation at iteration t. Note also that while there are random

numbers in the equation, they are assumed fixed once drawn for any particular particle

at a specific iteration. Thus PSO has been refactored such that the algorithm can begin

computing all 7 of the objective function evaluations potentially needed in iteration t + 1

before f(~xt) is computed. Once the evaluation of f(~xt) is completed for all particles only
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one of the indicator functions Ic
t+1 will be set to 1; hence only one of the positions ~Xc

t+1 will

be kept.

Although this speculative approach computes f( ~Xc
t+1) for all c ∈ C, even those for

which Ic
t+1 = 0, these extra computations will be ignored, and might just as well never have

been computed. We call the set of computations {f( ~Xc
t+1) : c ∈ C} “speculative children”

because only one of them is needed.

2.2 Topology in Speculative Evaluation

The number of speculative evaluations needed per particle depends on the number of neigh-

bors each particle has. The number of update cases in a topology where each particle has n

neighbors is 2(n + 1); there are two possibilities for updates to ~bP (updated by the particle

itself and not updated), and n+1 possibilities for updates to ~bN (updated by each neighbor-

ing particle and not updated). When the particle is also a neighbor to itself, as is always the

case in commonly used topologies, one of the cases can be eliminated, as a particle cannot

be the source of an update to its neighborhood best without also updating its personal best.

Thus we have 2(n + 1)− 1, or 2n + 1, speculative evaluations per particle. In a swarm with

p particles and n neighbors per particle, (2n + 1)p speculative evaluations are needed.

Because the number of speculative evaluations depends on the number of neighbors a

particle has, the choice of topology is an important one. The use of the Complete topology,

where every particle is a neighbor to every other particle, would require O(p2) speculative

evaluations per iteration. Clearly it is much more desirable to have a sparse topology, where

O(np) is much smaller than O(p2). However, some functions are better optimized with the

Complete topology and the quick spread of information it entails than with sparse topologies.

Accordingly, we use the Random topology described in [McNabb et al., 2009], which has

been shown to approximate the Complete topology. In Section 5 we report results for SEPSO

using both the Ring topology and the Random topology on a number of common benchmark

functions.
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Chapter 3

Relaxing the Requirements

Refactoring the PSO equations led us to find that speculative approaches are possible

in the parallelization of PSO. SEPSO reproduces standard PSO exactly, two iterations at

a time, at the expense of requiring several times the number of processors. In this section

we consider other speculative techniques inspired by SEPSO that relax the requirement of

exactly reproducing the behavior of the original PSO algorithm.

We outline three main improvements to speculative evaluation. First, in Section 3.1

we describe a method that uses all of the information found in doing speculative evaluations.

Then Sections 3.2 through 3.2.2 present a technique that reduces the number of speculative

evaluations that need to be done for each particle, allowing speculative evaluation to use

larger swarm sizes with the same number of processors. Finally, Section 3.3 shows a method

for speculating several iterations ahead, instead of just one.

None of these methods fundamentally change the PSO algorithm. They simply lead

to particles being at different iterations and having different values for personal and neigh-

borhood best positions than would have occurred in standard PSO, because they receive

different information. These kinds of relaxations are fairly typical in the parallelization of

PSO [Koh et al., 2006].

3.1 Pick the Best Child

In performing speculative evaluation as we have described it, 2n + 1 speculative evaluations

are done per particle, while all but one of them are completely ignored. It seems reasonable
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to try to make use of the information obtained through those evaluations instead of ignoring

it.

To make better use of the extra speculative evaluations, instead of choosing the

speculative child that matches the branch that the original PSO would have taken, we take

the child that has the best value. The methodology is exactly the same as with SEPSO except

for the process of choosing which speculative child to accept. The only change needed in

Algorithm 1 (see Appendix A) is in step 7, where s−e
t+1 with the best value is chosen from

s−e
t+1 instead of with the matching branch. We call this technique Pick Best.

This can be thought of as drawing a number of samples from the next iteration and

accepting the best one. Speculative particles that move in good directions are kept. Intuition

says that this technique favors exploitation over exploration, but as we will show in Section 5,

that is not always the case.

At this point it is also interesting to note a parallel between our methods and parallel

evolution strategies [Rudolph, 1991]. In evolution strategies, a parent individual (represent-

ing a potential solution to some objective function) produces a number of offspring by a

mutation operator. One of the individuals is selected by a selection operator, and that indi-

vidual becomes the parent for the next generation [Beyer and Schwefel, 2002]. Our methods

are similar, where our mutation operator is simply the PSO motion equations and the se-

lection operator is either the indicator function introduced in Section 2, in the case of our

original speculative algorithm, or the standard selection operator based on fitness, in the

case of this Pick Best technique.

3.2 Pruning the Speculative Evaluations

Because the SEPSO requires so many extra evaluations, a natural step to take is to eliminate

some of them. If we could reliably predict which branch were going to be taken, we could limit

ourselves to one speculative evaluation per particle instead of 2n+1. With a fixed number of

processors, this would allow us to greatly increase the swarm size relative to that needed in
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the original speculative algorithm (e.g., with 120 processors, a standard parallelization has a

swarm of size 120, complete speculative evaluation has a swarm of size 15, and pruning the

evaluations to only one per particle allows a swarm of size 60). As not all of the branches

are evaluated in any given iteration, we call this technique pruning.

We look at the statistical behavior of PSO to find probabilities of taking any particular

branch. While we cannot with certainty predict which branch a particle will take every

time, if we can use statistics to narrow down the 2n + 1 possible evaluations to a few likely

candidates, we can decrease the amount of computation required to do speculative evaluation

and improve our performance.

3.2.1 Branch Statistics

In Table 2.1 we presented all possible branches that a particle with two neighbors could

take. Here we lump all of the neighbors together and consider the statistics for the five

branches shown in Table 3.1. In the identifiers, N represents an update to ~bN coming from

any neighbor.

Table 3.1: Five Branches to Consider for Statistics
Identifier Source of ~bP update Source of ~bN update

(−,−) No update No update
(S,−) Self No update
(S, S) Self Self
(−, N) No update Some Neighbor
(S, N) Self Some Neighbor

We seek to find the probability of taking any given branch, given whatever informa-

tion is needed: Pr(Ct|·). In finding these probabilities, we do not attempt to derive any

distribution from the PSO equations, we simply look at empirical distributions. However,

even with empirical distributions, the problem with this approach is that it is not clear what

information influences the probability of taking a branch. We look at two factors that we
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Table 3.2: Branch Statistics in PSO
Topology Function (−,−) (S,−) (S, S) (−, N) (S, N)

Ring Sphere 53.0% 9.3% 11.4% 20.2% 6.2%
Griewank 51.7% 8.4% 12.2% 20.7% 7.0%
Rastrigin 49.5% 4.8% 14.6% 21.3% 9.9%

Rosenbrock 51.3% 7.4% 12.9% 21.1% 7.3%
Average 51.3% 7.5% 12.8% 20.8% 7.6%

Random Sphere 66.7% 11.9% 2.6% 15.6% 3.1%
Griewank 69.0% 10.9% 2.5% 14.9% 2.7%
Rastrigin 81.9% 5.5% 1.5% 10.0% 1.0%

Rosenbrock 74.2% 7.7% 2.2% 14.0% 1.8%
Average 73.0% 9.0% 2.2% 13.6% 2.2%

Complete Sphere 31.9% 9.2% 0.2% 45.1% 13.5%
Griewank 35.3% 8.4% 0.2% 44.1% 11.9%
Rastrigin 47.7% 6.7% 0.2% 38.2% 7.0%

Rosenbrock 35.3% 3.4% 0.3% 54.4% 6.6%
Average 37.6% 6.9% 0.2% 45.5% 9.8%

believe have a significant influence on Pr(Ct): topology (T ) and function (F ). Thus we are

looking at Pr(Ct|T, F ).

We show in Table 3.2 with what percentage a particle takes each of these branches

for three different topologies and four different functions. All of our statistics are from

swarms of 240 particles. Brief experimentation showed that other swarm sizes had similar

statistics. We ran 750 iterations on all combinations of functions and topologies except for

the functions Griewank and Rastrigin with the Complete topology. We found that those runs

frequently converged past machine precision after 500 iterations, and that led to erroneously

high values for the probability of (−,−). Instead we ran for only 450 iterations on those

two combinations. All of our results were averaged over 20 runs of the algorithm; thus the

probabilities presented are the averages of 3.6 million trials for the branch taken (2.16 million

for the two with only 450 iterations). Table 3.2 contains the results. The definitions for all

of the functions in the table are found in Section 4.

The probabilities presented in Table 3.2 are interesting in and of themselves and could

probably be used to better understand the characteristics of various topologies. It is notable

that there is small variation between functions in any given topology, but the variation

across topologies is far greater. However, our concern is with speculative evaluation. We are

interested in predicting the branch that any given particle will take at a particular iteration.
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For our purposes, it appears that given a topology, the probability of selecting a branch and

the function are close to independent, or Pr(Ct|T, F ) ≈ Pr(Ct|T ).

From Table 3.2 we can see that with the Random topology, we can pick the first

branch, corresponding to stagnation, and be right around 70% of the time. With the Ring

topology, we would be right 50% of the time. Branches (−, N) and (S, N) really correspond

to several actual branches, as all of the neighbors are lumped together. The 20% probability

of taking branch (−, N) with the Ring topology can be split into two branches, as there are

only two neighbors. It also turns out that the neighbor that last updated the neighborhood

best is the most likely to update it next time, so keeping track of that information could be

fruitful in trying to predict that branch.

The statistics for the Complete topology are less promising, as there are 240 neighbors

that branch (−, N) splits into, instead of two. Pruning does, however, allow for the possibility

of using the Complete topology in speculative evaluation while avoiding the explosion in the

number of evaluations it would otherwise entail.

Because there are a few branches with very high probabilities in the topologies we

are interested in, we can have hope that cutting out some of the evaluations that have low

probability will lead to an increase in overall performance. In order to implement this kind

of pruning, the only change that needs to be made to Algorithm 1 is in Step 2, where the

speculative children are generated. Instead of generating all possible speculative children,

generate the subset of the children that is desired.

3.2.2 Recovering from Pruning Too Much

When not all of the branches are evaluated, there is some probability of not evaluating

the branch that was actually taken by the original particle. There are a few possibilities

for recovery in this case. One is to leave the particle as it is, not accepting any of the

speculative evaluations, because none of them were correct. This leads to particles being

at different iterations, as some particles guess correctly while others do not. Thus we lose
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exact compatibility with the original PSO, though this particular relaxation is nothing new;

asynchronous adaptations of PSO do the same thing [Koh et al., 2006]. As an aside, it is

equivalent in this case to simply increment the iteration number of particles which fail to

correctly predict their branch. This keeps the iteration number constant across all particles,

simplifying the work needed to be done in determining neighbors when dynamic topologies

are involved. We call this technique Social Promotion.

Another possibility is to pick the best child, as described in Section 3.1. This ignores

the fact that the branch might have been wrong; it does not matter, because we simply

accept the child that had the best value. In most of the experiments that we ran, it turned

out that picking the best child performed better than keeping the particle back an iteration.

3.3 More than one iteration ahead

We need not simply produce speculative children for the next iteration. We can view all

possible speculative evaluations for a particle as an infinite tree with branching factor 2n+1.

As we have already seen that doing one full level of the tree produces too many extra

evaluations to be profitable, it is incredibly unlikely that doing two full iterations would

produce decent results. But, if the idea of speculating more than one iteration ahead is

combined with wisely pruning the possible evaluations based on branch statistics, we can

use just a few extra evaluations to go two or more iterations ahead on the most likely

branches.

When speculating more than one iteration ahead, the idea of Social Promotion cannot

feasibly be implemented, as we can only determine correct branches for the first iteration.

Thus in this case we always pick the child that has the highest value.

The question of which branches to take in this infinite tree is an intriguing one that we

can only begin to explore here. If the branch corresponding to stagnation, (−,−), has a 75%

chance of being taken, as in the Random topology with most functions, we could speculate

three iterations ahead on that branch and still have a 42% chance of predicting correctly.
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However, intuition would say that perhaps it is better to hope that the particle is productive

instead of stagnant, so a branch where the particle updates its personal best might be more

fruitful to try. In our experiments we try just one of the countless possibilities, but one

that turns out to work very well. More work is needed to compare the different branching

possibilities on various functions.
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Chapter 4

Experimental Setup

We ran experiments to compare our speculative parallelization of PSO to the standard

parallelization. At each iteration of the algorithms, we use one processor to perform one

function evaluation. The exact evaluation time at which this architecture becomes reasonable

depends on the amount of communication overhead in the parallel implementation and the

number of particles in the swarm. For our implementation we found that time to be around

100 milliseconds for swarms of 50 particles. When the swarm size increases, the minimum

evaluation time at which this architecture should be used decreases.

4.1 Function Evaluations vs. Time Steps

Results in serial PSO are typically presented in terms of function evaluations. This is

a natural abstraction from implementation details that still allows a comparison of the

implementation-independent aspects of each algorithm. The number of function evaluations

performed is assumed to be proportional to wall-clock time, as all evaluations are performed

in serial. Only reporting function evaluations could hide the fact that one algorithm requires

more overhead than another and thus actually takes more time to perform the same num-

ber of function evaluations; however, function evaluations are still considered the standard

method of reporting, as evaluation times for functions also vary greatly and could make the

additional overhead negligible.

In parallel PSO on long-running functions, the natural way to present results is in

terms of iterations, not function evaluations. This is because when all function evaluations
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at each iteration are performed concurrently, iterations are the direct equivalent of wall-clock

time. Thus we report iterations in our results instead of function evaluations. But because

SEPSO actually performs two iterations of PSO at each “iteration,” and Social Promotion

and Many Iterations make the idea of “iterations of PSO” somewhat nebulous, we instead

call each “iteration” a “time step.”

Just as serial PSO papers do not report actual running times of their specific imple-

mentations, we do not report running times, favoring the abstraction of time steps. However,

given the time required for the evaluation of the objective function and the communication

overhead per iteration for a specific implementation, a running time can be estimated from

all of our results. Simply multiply the number of time steps by the sum of the function

evaluation time and the overhead. We wish to stress that the “time steps” we report are

proportional to wall-clock time, given the architecture we have assumed.

4.2 Functions Used

We experimented with five common benchmark problems defined in [Herrera et al., 2010]:

Rastrigin, Sphere, Schwefel 2.21, Griewank, and Bohachevsky.

Rastrigin is initialized in [−5.12, 5.12]D and is defined as:

f(~x) =

D
∑

i=1

(

z2
i − 10 cos (2πzi) + 10

)

, z = x − c

Sphere is initialized in [−50, 50]D and is defined as:

f(~x) =

D
∑

i=1

z2
i , z = x − c

Schwefel 2.21 is initialized in [−500, 500]D and is defined as:

f(~x) = max
i

|zi|, 1 ≤ i ≤ D, z = x − c
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Griewank is initialized in [−600, 600]D and is defined as:

f(~x) =
1

4000

D
∑

i=1

z2
i − ΠD

i=1 cos

(

zi√
i

)

+ 1, z = x − c

And Bohachevsky is initialized in [−15, 15]D and is defined as:

f(~x) =

D
∑

i=1

(x2
i + 2x2

i+1 − .3 cos(3πxi) − .4 cos(4πxi+1) + .7)

In computing the branch statistics in Section 3.2.1, we also used the Rosenbrock

function. That function is defined as:

f(~x) =

D
∑

i=1

(

100(xi+1 − x2
i ) + (xi − 1)2

)

The c in the function definitions is a shifted center, in order to avoid origin-seeking

bias in the PSO algorithm and its variants [Monson and Seppi, 2005]. We move the center

of the shifted functions (all except Bohachevsky) to be halfway between the center and the

boundary of the initialization region. For example, if the initialization region is [−50, 50]D,

the center is (25)D. We tested all of these functions in their 20 dimension, 50 dimension,

and 500 dimension varieties.

We find benchmark functions useful in comparing algorithms, even though they only

take on the order of 1 millisecond to evaluate instead of the 100s that we said were required

to justify our parallel architecture. The purpose of exploring the behavior of an algorithm

on benchmark functions, whether in serial or in parallel optimization research, is because

benchmark functions are believed to represent functions that one might encounter in the real

world, regardless of the amount of time those functions take to evaluate. While benchmark

functions themselves take fractions of a second to evaluate and thus have no need of the

kind of parallelization we explore in this paper, they also have no need of particle swarm

optimization at all, as they can be solved analytically. Yet they are useful to us and to

29



www.manaraa.com

optimization researchers generally because they stand as surrogates for the kinds of func-

tions practitioners are actually interested in, and they allow us to explore the behavior of

optimization algorithms on several different classes of functions in an easy and standardized

way.

To provide additional evidence that performance on benchmark functions roughly

corresponds to performance on real-world problems, we also tested our parallelization meth-

ods on a typical research problem, that of fitting a model to a large quantity of data. We

generated 10,000 data points from a radial basis function network with 10 bases and some

added Gaussian noise. We then fit a radial basis function network to the data using PSO.

This amounted to a 30 dimensional function to optimize, with a function evaluation time on

the order of two seconds. We refer to this function as “the model fitting problem.”

4.3 Parallelization Techniques Compared

The parallelization techniques we compare are the standard parallelization (here labeled

Standard simply for ease of reference), our original speculative approach (recall that we refer

to this as SEPSO), and the four relaxations of SEPSO discussed in Section 3. In presenting

our results, we call the approach developed in Section 3.1 Pick Best. The methods described

in Section 3.2 through Section 3.2.2 are called Pick Best Pruned and Social Promotion

Pruned, and the method in Section 3.3 we call Many Iterations.

Using the same number of processors for each approach (and thus the same number

of function evaluations per time step) requires that our speculative parallelizations have

a smaller swarm size than the standard parallelization. For the topologies we used with

SEPSO and Pick Best, a particle has three neighbors including itself. As shown in Table 2.1,

this results in 7 speculative evaluations per particle. With one evaluation needed for the

original, non-speculative particle, we have 8p evaluations for every two iterations, where p

is the number of particles in the speculative swarm. The extra evaluations required in our

speculative approach would instead be used to evaluate particles in standard parallelizations,
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so we compare swarms of size p in speculative evaluation with swarms of size 8p in standard

approaches.

When performing pruning in Pick Best Pruned and Social Promotion Pruned, there

are a large number of ways to prune speculative evaluations. We experimented with several,

but present results for only one possible pruning. The pruning we present uses only the

two branches where the ~bN value was not updated: (−,−) and (S,−). Those branches are

convenient in that no messages are needed from neighbors in order to produce the positions of

the speculative particles—in distributed frameworks using several rounds of communication

(see Appendix A), one of the rounds of communication can be dropped entirely. Pruning

all but these branches also allows the use of arbitrarily dense topologies, as the number of

speculative particles is no longer dependent on the number of neighbors the particle has.

Because pruning only requires two speculative evaluations per particle (along with

evaluating the original particle), we can use swarms of size 1
3
p when pruning to compare to

a swarm of size p with the standard parallelization, instead of 1
8
p with other techniques.

There are also many ways to speculate several iterations ahead, and with Many Itera-

tions we again only show results for one of them. The combination of branches we tried uses

seven speculative evaluations per particle, matching the swarm size of the original specula-

tive algorithm. The seven evaluations we used corresponded to several iterations of branches

(−,−) and (S,−). Two of the evaluations were just one iteration ahead, four were two iter-

ations ahead, and one was three iterations ahead. The evaluations that were one iteration

ahead were branches (−,−) and (S,−); those that went two iterations ahead were formed by

taking either branch (−,−) or (S,−)and then branch (−,−) or (S,−); and the evaluation

going three iterations ahead followed branch (−,−) on all three iterations. As with Pick Best

Pruned and Social Promotion Pruned, this choice of branches allows the use of arbitrarily

dense topologies, as the number of speculative evaluations per particle is independent of the

number of neighbors the particle has.
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4.4 Topologies

For each benchmark function we report results using the topology that is widely considered

best for that function, as reported in the literature (e.g., Bratton and Kennedy [2007]). In

this paper we limit ourselves to the Ring topology and the Complete topology, as is common

practice, along with the Random topology (the parallel approximation to the Complete

topology mentioned in Section 1.1). We also mentioned in Section 1.2 that some related

work can be described as changes in topology, particularly that of having subswarms of fully

connected topologies that occasionally communicate with each other. This related work

focused mainly on functions with very fast evaluation times where such techniques drastically

reduce interprocessor communication. With long function evaluations these topologies are

not as practical, as only one particle is evaluated by each processor at each iteration. We

experimented with a subswarm topology and found that in every instance except one it

performed worse than either Complete or Ring, and thus we leave it out of the results except

in the one instance where it improved performance.

Where the Complete topology would normally be preferred, we use a Random topol-

ogy in SEPSO and Pick Best, as Complete leads to an explosion in the number of speculative

evaluations (as noted, the other speculative techniques can still use a Complete topology; we

often report results on both topologies for those methods). If speculative evaluation were

not being performed, it is possible that the Complete topology would be used. However,

the Complete topology also requires a very large amount of interprocessor communication in

distributed PSO, so it is still quite possible that Random would be used even with standard

parallelizations [McNabb et al., 2009]. But, to be fair in our comparisons, we compare to

the standard parallelization using both the Random topology and the Complete topology

(labeled PSO Random and PSO Complete in our results). Again, the amount of communi-

cation overhead is heavily dependent on implementation details which are not the focus of

this paper. A practitioner using a particular implementation can compare the results given

here for whichever topology is most practical given the specific implementation.
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Chapter 5

Results

We frequently present tables summarizing our results. In each table, we bold the

“best” method, meaning that it has at least a 90% success rate and its average time to

completion is faster than all other methods that have at least a 90% success rate. We used

a double-sided t-test to test for statistical significance in these results, and all bolded values

are statistically significant with a p-value of less than 10−5. In some instances two values are

bolded because they are statistically tied, while both are significantly better than all other

methods.

We first present results in Section 5.1 for the 20 dimensional variants of the benchmark

functions we tested. We give a discussion of each function individually at 20 dimensions, as

there are interesting characteristics of the algorithms that are worth discussing. In Section 5.2

we then give a summary of results for the 50 dimensional variants of the benchmark functions;

we do not go into as much detail in our discussion as the results are very similar to those in

20 dimensions. We finish our discussion of benchmark functions with their 500 dimensional

variants in Section 5.3, and we discuss results on the model fitting problem in Section 5.4.

5.1 20 Dimensions

5.1.1 Sphere

First we look at Sphere, the simplest of common benchmark functions. The function has

a single global optimum and no other local optima. Sphere is best optimized in terms of

function evaluations with a small swarm using a Complete topology. We expect our methods
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Figure 5.1: Function Sphere with 20 dimensions, comparing a pertinent subset of possible
methods. Each method performs one evaluation on each of 240 processors per time step.

to be perfect for such functions, and our results show this intuition to be correct. For this

comparison we used 240 processors, so the methods had swarms of size 30 (for SEPSO, Pick

Best, and Many Iterations), 80 (Pick Best Pruned and Social Promotion Pruned), and 240

(Standard). We compared too many methods here to fit into one graph, so we show just a

few methods in Figure 5.1 and in Table 5.1 we show a summary of the results for all methods

we tested.

In Figure 5.1 we see that Many Iterations using a Complete topology converges in-

credibly quickly on a very poor value. We found this behavior to be quite consistent across

functions for this method, so we rarely show results for Many Iterations Complete. However,

Pick Best Pruned works very well with Complete on this function.

5.1.2 Schwefel 2.21

Schwefel 2.21 is a function similar to Sphere, but Schwefel 2.21 is benefited more by larger

swarms than Sphere is. Thus our speculative algorithms often fail to outperform Standard

with 240 processors because the simple speculative methods only have 30 particles. As we
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Table 5.1: Summary of results for function Sphere with 20 dimensions, measuring number
of time steps to reach a value of 1e-35

Algorithm % Complete Mean St. Dev.

Standard Ring 0% N/A N/A
Standard Random 0% N/A N/A
Standard Complete 100% 931.0 19.1
SEPSO Ring 0% N/A N/A
SEPSO Random 85% 972.8 15.8
Pick Best Ring 100% 917.4 21.0
Pick Best Random 100% 768.1 14.3
Pick Best Pruned Ring 100% 967.8 9.9
Pick Best Pruned Random 100% 693.5 10.4
Pick Best Pruned Complete 100% 389.6 9.6

Social Promotion Pruned Ring 0% N/A N/A
Social Promotion Pruned Random 100% 971.1 10.6
Social Promotion Pruned Complete 100% 777.8 16.7
Many Iterations Ring 100% 575.2 9.8
Many Iterations Random 100% 442.4 7.1
Many Iterations Complete 0% N/A N/A

will show later, when we use 800 processors at 50 dimensions, our methods perform much

better. However, the pruned versions of our methods have 80 particles and thus are able

to outperform Standard even with only 240 processors. Because the graph of Schwefel 2.21

looks very similar to that of Sphere, we simply present all of our results in Table 5.2.

5.1.3 Rastrigin

Rastrigin is a multi-modal function that is best optimized with a large, Complete swarm.

It has been shown that with Rastrigin, the more particles there are in the swarm, the

lower function value it finds, up to at least 4000 particles [McNabb et al., 2009]. Smaller

swarms get caught in local optima and converge to poorer values. Because our speculative

algorithms require significantly smaller swarm sizes, we would expect to not perform very

well on functions such as Rastrigin. Our experiments show our intuition to be correct. In

this experiment we used 240 processors, so SEPSO and Pick Best each had 30 particles, and

the Standard algorithms had 240 particles. As expected, SEPSO and Pick Best converge
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Table 5.2: Summary of results for function Schwefel with 20 dimensions, measuring number
of time steps to reach a value of 1e-06

Algorithm % Complete Mean St. Dev.

Standard Ring 0% N/A N/A
Standard Random 0% N/A N/A
Standard Complete 100% 837.2 44.8
SEPSO Random 0% N/A N/A
Pick Best Random 5% 938.0 0.0
Pick Best Pruned Random 100% 639.9 29.4

Pick Best Pruned Complete 100% 597.7 77.9

Social Promotion Pruned Random 75% 938.0 33.0
Social Promotion Pruned Complete 100% 815.2 43.5
Many Iterations Random 100% 783.5 94.5
Many Iterations Complete 0% N/A N/A

quickly to worse local optima than Standard does. Figure 5.2 shows the results graphically,

and Table 5.3 shows results for all of the methods we tried.

5.1.4 Griewank

It is generally recommended to use the Ring topology when optimizing the Griewank function,

as Complete is prone to premature convergence on a local optimum [Bratton and Kennedy,

2007]. The global optimum of Griewank has a value of 0. When most trials reach the global

optimum but a few get stuck, the resultant “average value” graph has a flat line that is

misleading. Thus instead we present plots showing the percent of trials that have passed

some threshold at each time step, as is common practice with these functions [Mendes, 2004].

The threshold we chose for this case was 10−6, as that value is below any local optima and

the swarm always successfully reaches 0 once is passes that point.

We ran 50 trials of each experiment with Griewank, so that the curves are more

smooth. We show results in Figure 5.3 for swarms of size 100 and 800 using the Ring

topology. One can see in the figure that SEPSO reaches the global optimum on average

close to twice as fast as Standard, while Pick Best is close to three times as fast and Many
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Table 5.3: Summary of results for function Rastrigin with 20 dimensions, measuring number
of time steps to reach a value of 20

Algorithm % Complete Mean St. Dev.

Standard Ring 25% 743.4 212.0
Standard Random 100% 372.1 86.6
Standard Complete 95% 273.1 99.7

SEPSO Ring 5% 471.0 0.0
SEPSO Random 15% 208.0 17.0
Pick Best Ring 35% 489.0 152.0
Pick Best Random 15% 136.0 40.1
Pick Best Pruned Ring 95% 545.9 208.5
Pick Best Pruned Random 10% 95.0 11.0
Pick Best Pruned Complete 5% 59.0 0.0
Social Promotion Pruned Ring 5% 580.0 0.0
Social Promotion Pruned Random 80% 278.2 136.3
Social Promotion Pruned Complete 50% 200.5 130.2
Many Iterations Ring 10% 117.0 25.0
Many Iterations Random 5% 57.0 0.0
Many Iterations Complete 0% N/A N/A
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Figure 5.2: Function Rastrigin with 20 dimensions. Each method performs one evaluation
on each of 240 processors per time step.
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Figure 5.3: Function Griewank with 20 dimensions. Each method performs one evaluation
on each of 800 processors per time step. Instead of showing average function value, we show
the percentage of runs that have found the global optimum by each iteration. All algorithms
use the Ring topology.

Iterations is even faster when it is successful, though it is only successful 84% of the time.

Table 5.4 shows all of our results in tabular form.

We pause here to show some interesting characteristics of the speculative techniques

we have proposed. With 800 processors our methods perform very well on this function.

With 240 processors, however, the results are much more mixed. Because 240 processors is

near the point at which speculative evaluation becomes useful, it is enlightening to see the

behavior of the various algorithms at this point.

Table 5.4: Summary of results for function Griewank with 20 dimensions, measuring number
of time steps to reach a value of 1e-06

Algorithm % Complete Mean St. Dev.

Standard Ring 100% 762.2 19.4
SEPSO Ring 100% 426.0 81.0
Pick Best Ring 100% 272.0 17.7

Pick Best Pruned Ring 100% 282.9 10.7

Social Promotion Pruned Ring 100% 482.0 16.6
Many Iterations Ring 84% 183.2 49.4
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Figure 5.4: Function Griewank with 20 dimensions. Each method performs one evaluation
of the objective function on each of 240 processors per time step. All algorithms use the
Ring topology.

We show results in Figure 5.4 for swarms of size 30 and 240 using the Ring topology.

One can see in the figure that when SEPSO is successful, it finds the optimum much faster

than Standard. However, because the swarm size is so small, SEPSO gets stuck a little less

than half of the time.

When we look at the performance of our Pick Best approach, we see that it greatly

improves performance on Griewank. This is somewhat counter-intuitive, because Griewank

is deceptive and Pick Best seems like a greedy algorithm. But in Figure 5.5 we see that Pick

Best improves accuracy over SEPSO by 20%, while at the same time finding the optimum

over 100 time steps sooner on average. It seems that while Pick Best is locally greedy, there is

enough exploration in the seven speculative evaluations to overcome the inherent greediness

of the approach.

When we introduce pruning, our intuition about Pick Best turns out to be more

correct. While adding 50 more particles to the swarm (as pruning allows us to have 80

particles with 240 processors instead of only 30), Pick Best with pruning still gets stuck just
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Figure 5.5: Function Griewank with 20 dimensions, comparing Pick Best with results from
Figure 5.4. Each method performs one evaluation on each of 240 processors per time step.
All algorithms use the Ring topology.

as often as the original Pick Best. However, Social Promotion does well with pruning; it

increases the success rate to close to 100%, while still finding the optimum on average much

faster than the original PSO. These results are shown in Figure 5.6.

With Griewank, the premature convergence problems inherent in picking the best

child are exacerbated when speculating several iterations ahead. When Many Iterations

finds the optimum, it finds it quicker than any other method we tried, on average four times

faster than Standard. However, it also gets stuck and fails to find the optimum more than

any other method. The results are shown in Figure 5.7. Figure 5.7 is also interesting in

that it highlights the trade-off between accuracy and speed in the various approaches at this

swarm size. The faster the approach finds the optimum, the less likely it is to be successful.

Note here that Figure 5.7 is interesting to compare to Figure 5.3. The ordering of

the methods in terms of the number of time steps to completion is the same in both figures.

What is different is that at 240 processors, most of our methods fail to find the optimum 100%

of the time, while at 800 processors, all but Many Iterations succeed 100% of the time, and
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Many Iterations is very close. At some point between 240 and 800 processors, SEPSO and

Pick Best become successful, and at that point it is by far better to use speculative methods

than standard parallelizations. At some number above 800 processors, Many Iterations will

be become successful and will be the preferred method.

To further show this point, we present results using 1920 processors on the 20-

dimensional Griewank function in Figure 5.8. With 1920 processors Many Iterations finds

the optimum 100% of the time. What is interesting is that while going from 240 processors

to 1920 processors, the standard method of parallelization only decreased its time to com-

pletion by 5.9%. That is, the extra 1680 processors in standard parallelizations provide no

appreciable benefit. In contrast, Many Iterations with 1920 processors has the same swarm

size of 240 particles and uses the additional processors for speculative evaluation, giving a

decrease in time to completion of 78.9%, or a factor of almost 5. Once there are enough

particles in the swarm to guarantee success when optimizing a function, the best use of ad-

ditional processors is to speculate as far ahead as possible, speeding up the progress of the

algorithm.

5.1.5 Bohachevsky

Bohachevsky is a unimodal function best optimized with a Complete swarm. It is similar to

Griewank in that there is a global optimum with a value of 0, and the swarm sometimes finds

it and sometimes does not. Thus we present a graph similar to those of Griewank, because

“average value” graphs have a misleading flat line. We used 480 processors to optimize this

function. In Figure 5.9 we show a plot with a few pertinent methods, while Table 5.5 shows

all of the results. All of our speculative approaches found the optimum much quicker than

Standard with a Random topology. However, SEPSO was slower than Standard Complete

and got stuck 25% of the time. Pick Best, Pick Best Pruned, and Many Iterations all

outperformed Standard Complete, with Many Iterations finding the optimum about twice

as fast.
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Table 5.5: Summary of results for function Bohachevsky with 20 dimensions, measuring
number of time steps to reach a value of 1e-06.

Algorithm % Complete Mean St. Dev.

Standard Random 100% 472.3 6.6
Standard Complete 100% 238.2 11.2
SEPSO Random 75% 261.6 9.2
Pick Best Random 100% 211.8 9.2
Pick Best Pruned Random 100% 189.7 3.4
Pick Best Pruned Complete 25% 105.4 3.9
Social Promotion Pruned Random 100% 260.3 6.5
Social Promotion Pruned Complete 90% 197.9 12.2
Many Iterations Random 94% 118.2 2.6

Many Iterations Complete 0% N/A N/A

5.2 50 Dimensions

Given our observation from the 20 dimensional benchmark functions that Many Iterations

most often outperforms other speculative approaches, we only present results for Many Iter-

ations and Standard for the 50 and 500 dimensional variants. For these experiments we used

800 processors, as the problems are more difficult and speculative approaches perform best

when many processors are available, as we showed in Section 5.1.4. Many Iterations Com-

plete showed the same premature convergence that was observed with the 20 dimensional

benchmark functions, so we do not include those results in our tables; the success rate was

0% for all functions.

Tables 5.6 through 5.10 present summaries of our results for each of the benchmark

functions. As with the 20 dimensional variants, our speculative methods did not perform well

on Rastrigin, though for all other benchmarks Many Iterations significantly outperformed

Standard.

A summary of the results is shown in Table 5.11. For functions where Many Iterations

outperformed Standard, we report the average speed up. On all functions except Rastrigin,

our methods showed an average speed up of from two to six times compared to previous

methods.
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Table 5.6: Summary of results for function Rastrigin with 50 dimensions, measuring number
of time steps to reach a value of 100

Algorithm % Complete Mean St. Dev.

Standard Ring 5% 776.0 0.0
Standard Random 100% 593.2 89.5

Standard Complete 80% 343.8 145.8
Many Iterations Ring 25% 223.8 67.1
Many Iterations Random 25% 98.6 11.0

Table 5.7: Summary of results for function Sphere with 50 dimensions, measuring number
of time steps to reach a value of 1e-06

Algorithm % Complete Mean St. Dev.

Standard Ring 0% N/A N/A
Standard Random 30% 986.8 8.2
Standard Complete 100% 458.4 12.3
Many Iterations Ring 100% 288.7 3.9
Many Iterations Random 100% 248.6 5.1

Table 5.8: Summary of results for function Schwefel with 50 dimensions, measuring number
of time steps to reach a value of 80

Algorithm % Complete Mean St. Dev.

Standard Ring 0% N/A N/A
Standard Random 70% 871.6 57.1
Standard Complete 100% 599.0 85.6
Many Iterations Ring 100% 238.6 34.2

Many Iterations Random 100% 242.9 95.4

Table 5.9: Summary of results for function Griewank with 50 dimensions, measuring number
of time steps to reach a value of 1e-06

Algorithm % Complete Mean St. Dev.

Standard Ring 100% 1898.5 25.7
Many Iterations Ring 97% 312.4 6.3
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Table 5.10: Summary of results for function Bohachevsky with 50 dimensions, measuring
number of time steps to reach a value of 0.01

Algorithm % Complete Mean St. Dev.

Standard Ring 100% 1434.0 62.1
Standard Random 100% 704.5 19.7
Standard Complete 20% 377.5 14.9
Many Iterations Ring 95% 229.8 11.4

Many Iterations Random 35% 171.6 4.0

Table 5.11: Average speed up, comparing the number of time steps to completion for the
best speculative topology to the time steps to completion for the best standard topology. All
functions have 50 dimensions.

Function Speed Up Factor

Rastrigin N/A
Sphere 1.84
Schwefel 2.51
Griewank 6.08
Bohachevsky 3.07

5.3 500 Dimensions

At 500 dimensions the performance of constricted PSO on benchmark functions becomes

rather dismal. In almost all cases, Standard fails to make any significant progress. Our

search for an explanation seems to say that the space is too large for particles to converge

to the same point, so all updates to the best position found come from a single particle

wandering in the space. Every time that single particle finds a new best position, its velocity

contracts, so the particle is unable to make significant progress on its own. In constricted

PSO it is necessary to have a collection of particles exploring a promising location to keep

the particles’ velocities from contracting prematurely, and in 500 dimensions the space is too

large to get the collection of particles to the same location.

The results that we present show that while Standard parallelizations suffer from

this problem, Many Iterations does not. Though we can provide some intuition for why this

might be the case, it remains as future work to provide a strong theoretical explanation. The

intuition is that we are speculating about future positions along paths where each particle’s
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Figure 5.10: Function Sphere with 500 dimensions. Each method performs one evaluation
on each of 800 processors per time step.

velocity does not contract. The particular branches we selected corresponded to not having

received a new value for ~bP nor ~bN . In those branches, the particle continues in the same

direction it was going, without a contraction in velocity.

Because none of the Standard approaches were successful at optimizing the 500 di-

mensional benchmark functions, we do not present tables as we did for the 50 dimensional

variants. We do, however, show a few figures demonstrating the results we have just ex-

plained. Figure 5.10 shows the function Sphere, Figure 5.11 shows Griewank, and Figure 5.12

shows Rastrigin. Note that at 500 dimensions speculative approaches outperform standard

parallelizations on Rastrigin, whereas they did not at 20 and 50 dimensions.

One could argue that a fairer comparison would have modified the PSO motions

equations so that individual particles did not contract their velocity so quickly when finding

good locations. However, we used the same motion equations for both Standard and Many

Iterations; changing the motion equations to help Standard would also help Many Iterations,

and we would expect to see results that are at least as compelling as those from the 50

dimensional benchmark functions.
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Figure 5.11: Function Griewank with 500 dimensions. Each method performs one evaluation
on each of 800 processors per time step.
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Figure 5.12: Function Rastrigin with 500 dimensions. Each method performs one evaluation
on each of 800 processors per time step.

48



www.manaraa.com

5.4 Model Fitting

For the model fitting problem we used 144 processors. We show results for three methods:

Standard with a Random topology, Standard with a Subswarm topology, and Many Itera-

tions with a Random topology. Standard with a Subswarm topology had eight independent

subswarms of 18 particles each, and the particles in each subswarm were connected with a

Random topology. In the graphs we call this method Standard Subswarms.

Figure 5.13 shows our results for this function. The function value reported is the sum

squared error of the model fit. Figure 5.14 shows the percent of runs that reached a value

for sum squared error of 55,000 by each time step, which we designate as successful. Many

Iterations took on average 126 time steps to reach this value, while Standard Subswarms

took on average 298. The p-value for a t-test on this statistic is less than 10−8. With

our implementation of parallel PSO, each time step took on average 10.06 seconds; 1.83

seconds of that was function evaluation time and the rest was overhead. With this particular

implementation, then, Many Iterations takes on average 21 minutes to reach a successful

value, while Standard Subswarms takes 50 minutes.

49



www.manaraa.com

 10000

 100000

 1e+06

 1e+07

 0  100  200  300  400  500  600  700
 10000

 100000

 1e+06

 1e+07

B
e
s
t 
F

u
n
c
ti
o
n
 V

a
lu

e

Time Steps

Standard Random
Standard Subswarms

Many Iterations Random

Figure 5.13: Results for fitting a radial basis function to noisy data. We use 144 processors
for each method, so each time step corresponds to 144 function evaluations.
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Figure 5.14: Results for fitting a radial basis function to noisy data. We use 144 processors
for each method, so each time step corresponds to 144 function evaluations.
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Chapter 6

Conclusions

We have described a new technique for using processors in parallel PSO to improve

the performance of the algorithm. To our knowledge, this is the first time extra processors

have been used to do anything in PSO besides increase the swarm size. In an increasingly

parallel world, such advancements will prove to be crucial to the continued effectiveness of

PSO.

We have detailed how to perform speculative evaluation in PSO in several different

parallel architectures. Using this methodology, the behavior of the original PSO algorithm

can either be exactly reproduced, two iterations at a time, or the behavior can be modified

in order to improve performance. While exactly reproducing PSO sometimes uses too many

extra processors to be useful, when we allow ourselves some freedom with the algorithm

we see great improvements over previous methods. We have shown results that conclusively

demonstrate the superiority of our techniques for several functions over the standard practice

of adding particles to the swarm when extra processors are available, giving speed ups of up

to six compared to previous parallelization techniques.

What we have presented is not a new variant of PSO. We presented a new paralleliza-

tion technique, so we compared parallelization strategies on the same algorithm, the original

PSO. Our most promising techniques do change the behavior of the PSO algorithm slightly,

as do some other previously proposed parallelization techniques, such as asynchronous PSO.

However, our methods are applicable to almost all PSO variants, and so a comparison using

the same variant for each of the parallelization techniques tested is justified.
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We have given five different possible approaches to speculative evaluation, each of

which has different properties. These approaches perform differently on different functions

and at different swarm sizes, as would be expected by the No Free Lunch Theorem for Opti-

mization [Wolpert and Macready, 1997]. We have given a brief evaluation of the premature

convergence properties of these methods on deceptive functions when a smaller number of

processors is available. We have also shown evidence that when many processors are available

by far the best thing to do in most cases is to speculate as far ahead as the extra processors

allow.

Though our methods show great improvements on some functions, they do not work

for all functions. As is commonly known, in PSO there is a trade-off between exploration

and exploitation. Some functions need only minimal exploration, and some never seem to

have enough. Increasing the swarm size is a natural way to increase exploration in a parallel

environment. However, once “enough” exploration has been reached for any particular func-

tion, adding additional particles adds only incremental benefits. At this point, a better use

of the additional processors, as we have shown, is to perform some amount of speculative

evaluation.

Large parallel clusters are often required to successfully optimize practical modern

problems. To properly use PSO with such clusters, a balance needs to be made between

using processors to increase the swarm size and using them to increase the speed of the

algorithm. This work is a first step in that direction that opens the door to many future

improvements on speculative methods in the parallelization of PSO.
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Chapter 7

Future Work

In this work we have focused on PSO itself and not all of its variants. It remains as

future work to apply speculative approaches to recent and popular PSO variants, such as

the Fully Informed Particle Swarm [Mendes et al., 2004]. While our methods will not always

be immediately applicable to every variant, we are confident that some kind of speculative

approach will be beneficial to the parallelization of all forms of PSO, especially as the number

of processors used gets into the thousands.

We mentioned related work showing that increasing the swarm size throughout the

course of the algorithm could provide improved performance over a fixed swarm size in

serial PSO [Montes de Oca et al., 2010]. If this method were extended to parallel PSO, most

processors would be idle in the first few iterations, while more would be utilized at the end.

During iterations where there are many un-utilized processors, a natural use of them would

be speculative evaluation, performing two or more of those iterations at a time.

The issues of the sampling distribution of speculative relaxations, branch statistics,

and why standard PSO fails at 500 dimensions were briefly mentioned in this paper. Each of

those issues needs further treatment. The sampling distribution of our speculative methods

could be compared to Poli’s description of standard PSO’s sampling distribution [Poli, 2008b].

The branch statistics could be used to analyze topologies and discover why certain topologies

work well on some functions but not on others; perhaps PSO performance is more dependent

on the branch statistics of a combination of topology and function than on the topology itself.

And discovering exactly why constricted PSO fails at 500 dimensions while Many Iterations
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does not could lead to improvements in the standard PSO algorithm, even when not running

in parallel.

We opened the door to speculative parallelization methods in PSO and described

the possible speculative evaluations to perform as an infinite tree from which branches are

selected. However, we only presented a few of the countless possibilities for selecting those

branches. Our methods for determining which speculative evaluations to perform were in-

dependent of the particle; all particles performed the same number and type of evaluations.

Another way to allocate speculative evaluations is to somehow use the performance of each

particle to determine how many and which extra evaluations it can have.

Any other optimization algorithm that only depends on current sampling positions

when computing the next position to sample can be parallelized with this technique. In

particular, genetic algorithms produce future generations by combining individuals from the

current generation. With a large population size there would be an unwieldy amount of

possible future individuals, but the potential exists to modify the algorithm to use some

kind of speculative evaluation.
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Appendix A

Implementing Speculative Evaluation

It is not trivial in some parallel architectures to determine which speculative position

was the correct next position of each particle. In this section we discuss in detail some im-

portant considerations in the implementation of our methods. First we discuss the relatively

easy case of a centralized parallel PSO algorithm with a master computer and many slaves.

In such an architecture, the master keeps track of all necessary information with only trivial

message passing needed. Then we discuss the more complicated case of a distributed algo-

rithm, where each particle is on its own and needs to send and receive messages to and from

other particles. Finally we discuss the further complications of a dynamic topology such as

Random, where a particle’s neighbors change from one iteration to another.

A.1 Terminology

To aid in describing our methodology, we introduce a few terms. A particle’s set of speculative

children is the set of all possible next iteration states (including the particle’s position, ~bN

and ~bP positions) that a particle could have. We use pt to denote a particle at iteration

t and st+1 to denote one of pt’s speculative children, corresponding to one of the rows in

Table 2.1. nt is a neighbor of particle pt. Sets of particles are given by p, s, or n, whereas

single particles are simply p, s, or n.

We separate each iteration of PSO into several steps. First there is the motion step,

where a particle updates its position and velocity. Then a particle’s position is evaluated,
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and the particle updates its current value and its personal best. Finally, a particle gets

information from its neighbors and updates its neighborhood best.

A particle at iteration t − 1 that has been moved to iteration t using (1.1) and (1.2),

but whose position has not yet been evaluated, is denoted as p−e
t . Once its position has been

evaluated, but it has still not yet received information from its neighbors, it is denoted as

p−n
t . Only when the particle has updated its neighborhood best is it a complete particle at

iteration t. It is then simply denoted as pt.

A.2 Centralized Algorithms

In a centralized, or Master-Slave, parallel PSO algorithm, one machine, the master, keeps

track of all necessary information, and all other machines are merely used to evaluate the

objective function at various positions as directed by the master [Belal and El-Ghazawi,

2004]. To perform speculative evaluation in such an architecture, the master generates the

positions to evaluate speculatively as in (2.3). After having the slaves evaluate the objective

function at all necessary positions, the master then decides which position to accept for each

particle, as in (2.7). The outline of the procedure is given in Algorithm 1.

Algorithm 1 Speculative Evaluation in a Centralized PSO

1: Move all pt−1 to p−e
t using (1.1) and (1.2)

2: For each p−e
t , get its neighbors n−e

t and generate s−e
t+1 according to (2.3).

3: Evaluate all p−e
t and s−e

t+1 in parallel
4: Update personal best for each p−e

t and s−e
t+1, creating p−n

t and s−n
t+1

5: Update neighborhood best for each p−n
t , creating pt

6: for each pt do

7: Pick s−n
t+1 from s−n

t+1 that matches the branch taken by pt according to (2.7).
8: Pass along personal and neighborhood best values obtained by pt, making p−n

t+1

9: end for

10: Update neighborhood best for each p−n
t+1, creating pt+1

11: Repeat from Step 1 until finished

Given a set of particles at iteration t − 1 (perhaps which have just been initialized),

the master must move each particle using (1.1) and (1.2) to obtain the set p−e
t . For each

particle p−e
t , the master must then get its set of neighbors n−e

t and use their positions, along

56



www.manaraa.com

with the position of p−e
t , to calculate all possible values of ~Xc

t+1, using (2.3). These positions,

along with the original particle’s associated information (such as values for~bP and~bN), define

a set of speculative children, s−e
t+1. The master then has a set of particles p−e

t , and for each

particle a set of speculative children s−e
t+1, which can all be evaluated at once.

The master then has the slaves evaluate the particles. Once all particles, speculative

and original, have been evaluated and the values reported to the master, the master deter-

mines which speculative child of each particle was the correct one. Mathematically, this

corresponds to the evaluation of an indicator function similar to that found in (2.1). In prac-

tice, this is done first by updating each (original) particle’s~bP , if necessary, then by updating

the particle’s ~bN with information from the particle’s neighbors. This is simply the original

PSO algorithm, and corresponds to steps 1–5 in Algorithm 1. Given the updates to ~bP and

~bN , the case from Table 2.1 can be determined, as per (2.7). The child with the matching

case is kept, and all other speculative children are discarded (step 7 in Algorithm 1).

The parent pt must pass its personal best value to the child, as the child knows only

the position that it guessed, not the function value at that position. It is possible that both

pt and st+1 update their personal bests, but pt’s value is better. For example, suppose that

pt−1 has a personal best value of 3, and that we are seeking to minimize the function. p−e
t is

created, and s−e
t+1 is moved assuming that pt has updated its personal best with its position

at time t. Then both p−e
t and s−e

t+1 are evaluated, with values 1 and 2, respectively. s−n
t+1

would think that its current position is its personal best, as the value it found, 2, is better

than its previous personal best value of 3. It needs to receive the personal best value from

its parent to know that its personal best position ~bP is actually the position of pt, not st+1.

The parent also needs to pass the value of the neighborhood best that the child

guessed. The child only knows the position and needs the value in order to make future

comparisons between neighborhood best positions (step 8).

Upon picking the correct branch for each particle and updating the child’s personal

best and neighborhood best value (from iteration t), the result is the set p−n
t+1, as the particles
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are now no longer speculative. What remains is to update the neighborhood best of those

particles from their neighbors (from iteration t + 1), as above, to obtain pt+1. That set

of particles can subsequently be used to produce the sets p−e
t+2 and s−e

t+3 (steps 1 and 2 in

Algorithm 1), and the process repeats itself.

A.3 Distributed Algorithms

In a distributed parallel PSO algorithm, individual processors not only perform evaluations

of particles, but also their movement. The information for each particle is not held by a

central machine that directs the algorithm; instead, each processor has the information for

the particle or particles that it is in charge of and must perform the steps of the algorithm

for those particles [McNabb et al., 2007]. Messages such as values and positions for the

neighborhood best are sent between processors. There may still be some machine that

collects information from all of the particles and outputs the result of the algorithm, though

that machine’s importance is much less than in centralized algorithms.

To perform speculative evaluation in a distributed PSO algorithm, there must be

some way to have processors evaluate the speculative children of particles, without giving

the speculative particles the same treatment as actual particles, as the speculative children

only live for one iteration. One way that can be done is by assigning each particle a set of

machines instead of a single machine, and the particle directs its extra machines to evaluate

its speculative children. The same information needs to be passed between particles no

matter the framework used. We describe here the messages each particle needs to receive to

perform speculative evaluation.

A processor that is controlling a single particle pt−1 must first move the particle to

p−e
t and produce the particle’s speculative children s−e

t+1. This is done in the same way as

described above. However, in order to produce s−e
t+1, the processor needs information about

the particle’s neighbors, so there must be some message passing to get that information.
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Particularly, the information that the processor needs is the position of each of the particle’s

neighbors at iteration t.

To get that information, a round of message passing is required. Each particle sends

its position to its neighbors at iteration t, so that all particles can generate s−e
t+1. After

each particle evaluates its position and the positions of its speculative children, it passes

information about the outcome of iteration t to its neighbors, so that neighboring particles

can update their neighborhood bests to move from p−n
t to pt. Once that communication is

finished, the particle can select the speculative child which matched the branch that iteration

t actually produced. Then another round of information passing follows, for iteration t + 1,

so that p−n
t+1 can be updated to pt+1. Two iterations have then been completed with only one

round of evaluations, and the next iteration can start again with the first round of message

passing.

In distributed frameworks, synchronizing all of the machines for a round of message

passing can be expensive. The method just described uses three rounds of message passing

for every two iterations (corresponding to steps 2, 5 and 10 in Algorithm 1). It is possible

to perform speculative evaluation in PSO with only one round of communication per two

iterations. However, the methodology is tedious and distracting from the present discussion,

so we defer its description to Appendix B.

A.4 Dynamic Topologies

Performing speculative evaluation in PSO with a dynamic topology (where neighbors change

from iteration to iteration) raises a sticky issue of its own. In a static topology, at iteration

t a particle already has all of the information about the positions of its neighbors during

iterations 1 through t − 1. If the neighbor finds a better position at iteration t, the particle

updates its neighborhood best, but if it does not, it still has its old neighborhood best from

its neighbors for all previous iterations.
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In a dynamic topology, a particle might not have information about the previous

positions of its neighbors at iteration t. That means that its new neighborhood best could

come not only from its neighbors’ positions at iteration t, but also from their personal best

from iteration t − 1, as neighbors’ personal bests are what are used to update a particle’s

neighborhood best. That creates a problem for speculative evaluation—there are potentially

more than 2n + 1 possible next positions, increasing the amount of work that must be done

to perform the second iteration at the same time as the first.

This is easily fixed by updating each new particle p−e
t+2 with the currently available

information about its neighbors n−e
t+2 before producing its children s−e

t+3. If a particle p−e
t+2

updates its neighborhood best with the personal bests of n−e
t+2 before calculating the next

possible positions for s−e
t+3, there are still only 2n+1 possible next positions, and the problem

is avoided.
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Appendix B

Alternate form of message passing

Here we describe a method that requires only one round of communication for each

pair of iterations, which happens at step 5 of Algorithm 1. Many more messages are needed,

but that is sometimes more desirable than synchronizing all of the machines three times.

This second method only requires one round of passing information because informa-

tion about both iterations t and t+1 is passed at the same time. Each processor reconstructs

from the messages it receives all of the information that it needs about its neighbors. Mes-

sages are passed directly after evaluating each particle and its children, so all messages are of

the form of p−n
t or s−n

t+1. The first iteration needs to be treated specially, so each particle can

produce its initial set of speculative children—neighbors need only pass their initial position.

This kind of message passing necessitates the careful use of random seeds, so that when each

processor computes the motion equations for its neighbors it gets the same results as its

neighboring processors.

With the results of evaluating p−e
t and s−e

t+1, along with all of the required messages

from neighboring particles, the goal is to produce pt+1 and output p−e
t+2 and s−e

t+3 ready to be

evaluated for the next iteration. We first focus on the messages needed to produce pt+1.

Upon evaluation, p−e
t becomes p−n

t , needing only to get its neighborhood best infor-

mation from its neighbors. All of its neighbors, then, must send it a message, so that from

their updated personal best at iteration t the particle becomes pt. The work done with the

messages received thus far is just as in regular PSO, and is graphically depicted in Figure B.1.
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p−n
t

n−n
t

pt

Figure B.1: The production of pt from the original particle p−n
t and the messages n−n

t .

p−n
t

n−n
t

pt

p−n
t+1

s−n
t+1

Figure B.2: The production of p−n
t+1 from the original particle p−n

t , messages n−n
t and s−n

t+1,
and intermediate particles.

With pt we can select the correct speculative child as described above and produce

p−n
t+1. Again we show the use of messages thus far graphically, in Figure B.2.

We then need the set of neighbors to p−n
t+1, n−n

t+1, so we can update p−n
t+1’s neighborhood

best. To produce each neighbor n−n
t+1, we need the same information for the neighboring

particle that we needed to produce the original particle, p−n
t+1; we need the original neighbor

particle, its speculative children, and its neighbors. With that information, the set n−n
t+1 can

be obtained by following the same process used to obtain p−n
t+1. We graphically show the

messages needed to produce n−n
t+1 in Figure B.3. Note that it looks identical to Figure B.2,

just with different sets of particles.

With n−n
t+1 and p−n

t+1, we can produce pt+1. This is shown in Figure B.4. Note that we

just combined Figures B.2 and B.3, putting them together to make pt+1, as all the particle

needs is its neighborhood best to be updated.

In order to get pt+1, then, a particle needs to receive messages from its neighbors, its

neighbors’ neighbors, its speculative children, and its neighbors’ speculative children. The

n−n
t

nn−n
t

nt

n−n
t+1

ns−n
t+1

Figure B.3: The production of each n−n
t+1 from the original particle n−n

t , messages nn−n
t and

ns−n
t+1, and intermediate particles. nn is the set of neighbors for each particle n, and ns is

the set of n’s speculative children. Note the similarity between this and Figure B.2.
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p−n
t pt

p−n
t+1

s−n
t+1

n−n
t

n−n
t

nn−n
t

nt

n−n
t+1

ns−n
t+1

pt+1

Figure B.4: The production of pt+1 from the original particle p−n
t , messages n−n

t , s−n
t+1, nn−n

t ,
and ns−n

t+1, and intermediate particles. Note that this is just a combination of Figure B.2
and Figure B.3.

pt+1

nt+1 n−e
t+2

p−e
t+2 s−e

t+3

Figure B.5: The production of p−e
t+2 and s−e

t+3 from pt+1 and nt+1, each of which are produced
as in Figure B.4.

particle pt+1 can be passed to some central machine to track the progress of the algorithm,

and it can be moved to p−e
t+2 in order to start the next iteration.

The next goal is to produce the set s−e
t+3. As described above, the necessary compo-

nents to produce s−e
t+3 are p−e

t+2 and the neighbors of p−e
t+2, n−e

t+2. We already have p−e
t+2, so what

remains is to produce n−e
t+2. It is sufficient to obtain nt+1, as each neighbor particle nt+1 can

be moved with the motion equations to n−e
t+2.

We have already described how to use a set of messages to obtain pt+1. The process

is exactly the same to produce each nt+1, requiring the same messages, only for the neighbor

particles instead of the particle itself. Figure B.5 shows graphically how s−e
t+3 is produced.

Having obtained both p−e
t+2 and s−e

t+3 from the messages received, the algorithm then

moves to the evaluation phase, and the process repeats itself. The particles are evaluated,

send their messages, and produce the next set of particles to be evaluated from the messages

received.

To perform the entire process, at each message passing round a particle must receive

messages from its neighbors, its neighbors’ neighbors, its neighbors’ neighbors’ neighbors,

its speculative children, its neighbors’ speculative children, and its neighbors’ neighbors’
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speculative children. With the Ring topology, that looks like more messages than it really

is, as many of the neighbors’ neighbors are duplicates. With the Random topology, however,

the list of necessary messages could be rather large.

One more issue arises when dealing with dynamic topologies. With neighbors chang-

ing each iteration, messages that processors pass to their neighbors need to be sent to the

correct neighbors for each iteration. A particle cannot simply send messages to its neighbors’

neighbors’ neighbors—it needs to send messages to its iteration t neighbors’ iteration t + 1

neighbors, and so on. For every neighbor outward information is sent, the iteration also

needs to be incremented, as information about neighbors’ neighbors is used during iteration

t + 1, and information about neighbors’ neighbors’ neighbors is used to reconstruct informa-

tion about iteration t + 2. Also, this method of message passing again requires the use of

random seeds if the topology is random, so that each processor computes the same neighbors

for a particle as all other processors.

This may seem like an inordinate amount of work, and with some distributed PSO

frameworks it is. However, other parallel frameworks necessitate this type of message passing,

so we have described how speculative evaluation can be performed in those circumstances.
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